Faster than Optimal Snapshots (for a While)

نویسندگان

  • James Aspnes
  • Hagit Attiya
  • Keren Censor-Hillel
  • Faith Ellen
چکیده

This paper presents a breakthrough in shared memory computation by giving an implementation of a snapshot object for n processes that has O(log b log n) step complexity for update operations and O(log b) step complexity for scan operations, where b is the number of updates. The algorithm uses only reads and writes. For polynomially many updates, this is an exponential improvement on the previous linear snapshot algorithms, and it overcomes the existing Ω(n) lower bound by having the step complexity depend on the number of updates. The key to this implementation is the construction of a new object consisting of a pair of max registers that supports a scan operation. Applications of this construction include an implementation of a limited-use generalized counter with polylogarithmic step complexity. This can be used, for example, to monitor the number of active processes, which is crucial to adaptive algorithms. ∗Yale University, Department of Computer Science. Supported in part by NSF grant CCF-0916389. †Technion. Supported in part by ISF grant 1227/10. ‡Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory. Supported by the Simons Postdoctoral Fellows Program. §University of Toronto, Department of Computer Science. Supported in part by the Natural Science and Engineering Research Council of Canada.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Static Task Allocation in Distributed Systems Using Parallel Genetic Algorithm

Over the past two decades, PC speeds have increased from a few instructions per second to several million instructions per second. The tremendous speed of today's networks as well as the increasing need for high-performance systems has made researchers interested in parallel and distributed computing. The rapid growth of distributed systems has led to a variety of problems. Task allocation is a...

متن کامل

Thresher: An Efficient Storage Manager for Copy-on-write Snapshots

A new generation of storage systems exploit decreasing storage costs to allow applications to take snapshots of past states and retain them for long durations. Over time, current snapshot techniques can produce large volumes of snapshots. Indiscriminately keeping all snapshots accessible is impractical, even if raw disk storage is cheap, because administering such large-volume storage is expens...

متن کامل

Belief Propagation and Beyond for Particle Tracking

We describe a novel approach to statistical learning from particles tracked while moving in a random environment. The problem consists in inferring properties of the environment from recorded snapshots. We consider here the case of a fluid seeded with identical passive particles that diffuse and are advected by a flow. Our approach rests on efficient algorithms to estimate the weighted number o...

متن کامل

A Faster than Optimal Snapshots (for a While)

This paper presents a novel implementation of a snapshot object for n processes, with O(log b logn) step complexity for update operations and O(log b) step complexity for scan operations, where b is the number of updates. The algorithm uses only reads and writes. For polynomially many updates, this is an exponential improvement on previous snapshot algorithms, which have linear step complexity....

متن کامل

Finding Top-k Shortest Path Distance Changes in an Evolutionary Network

Networks can be represented as evolutionary graphs in a variety of spatio-temporal applications. Changes in the nodes and edges over time may also result in corresponding changes in structural garph properties such as shortest path distances. In this paper, we study the problem of detecting the top-k most significant shortest-path distance changes between two snapshots of an evolving graph. Whi...

متن کامل

Experiments with a Wavelet - Based Approximate

The Proper Orthogonal Decomposition (POD) or Karhunen-Lo eve Transform (KLT) is a powerful tool to obtain low-dimensional models for large scale dynamical systems, described by partial diierential equations. Starting from a set of solutions (obtained by experiment or computation), called snapshots, the method computes an \optimal" basis of eigenmodes for the snapshots , which can be used to con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012